

東北真栄会 土木部会 東北黒沢建設工業株式会社

工事概要

工事内容

ごみ焼却施設内機械及び電気設備、ごみ焼却施設建築構造物

他地下埋設物解体

地下1階、地上3階 RC造 一部プラットホームS造

解体延べ床面積 1,914m2

既存電気集塵器 高さ 14m

改善内容

従来

ワイヤーと水槽を錘にした控えと足場による バットレス(控え壁)的な控えを計画

改善内容

用地敷地に設置可能なスペースが有った為、 安全を優先した足場の計画を行い、 増設による足場一体型補強方法を選択した。

屋根スパン 桁方向 22.087m 軒方向 25.602m

軒高 15.675m

控え 2列

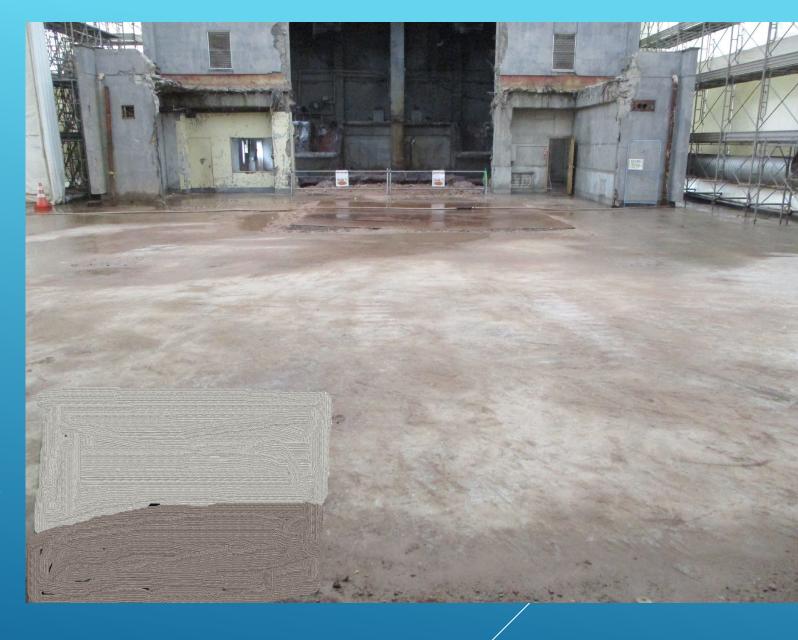
①施工性の向上 テント内側ワイヤーが、 解体時の作業の妨げとなる。

②安全性の向上

内部の機器撤去後ワイヤーを 支持する部材が少なく

①施工性の向上 テント内側ワイヤーが、 解体時の作業の妨げとなる。

②安全性の向上


内部の機器撤去後ワイヤーを 支持する部材が少なく

①施工性の向上 テント内側ワイヤーが、 解体時の作業の妨げとなる。

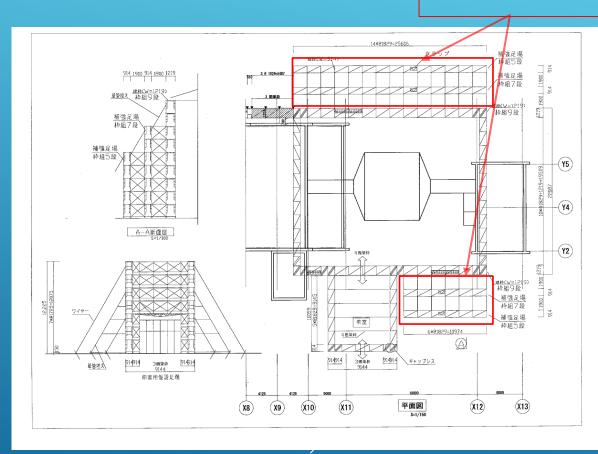
②安全性の向上

内部の機器撤去後ワイヤーを 支持する部材が少なく

①施工性の向上 テント内側ワイヤーが、 解体時の作業の妨げとなる。

②安全性の向上

内部の機器撤去後ワイヤーを 支持する部材が少なく



平面図比較

従来例 水槽タンク 大打ちパイプ かねむ 4階パラ天 (GL+14900) 最高高さ (GL+11200) 1820 1820 1829

改善事例

施工の比較

従来の施工方法

評価

改善した施工方法

評価

施工性・除染作業には影響がないが 機器解体時ワイヤーを掛け かける手間が掛かる

△ • 重機の作業半径内に支障がない為 連続作業が可能になる

工期

・テント組立25日機器解体50日 △・テント組立32日、機器解体32日

合計75日

11日短縮 合計64日

ワイヤーを支持する所が少なく なり揺れが大きくなる

安全性・解体時内側の機器が無くなる為 △・震度4程度の地震が有ったが影響無し ○ 強風15m程度にも影響が無かった

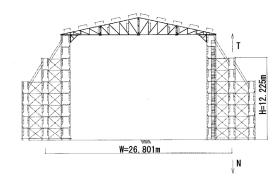
総合評価・狭い工事個所でも施工が可能 だが安全性に不安がある

△・安全性が高く機器解体もスムーズに ◎ 作業が出来る

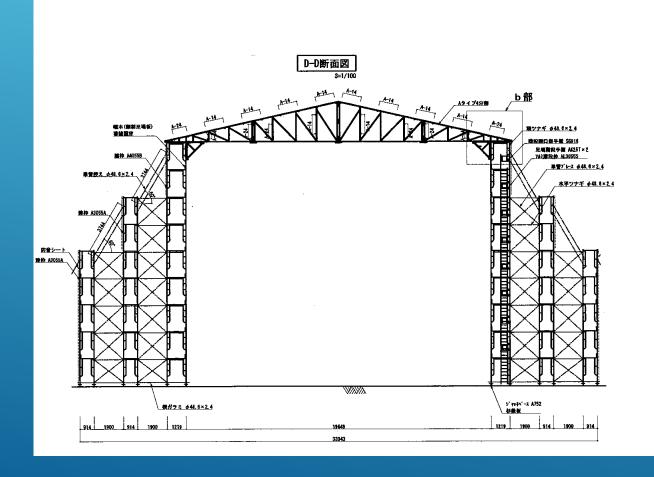
強度計算書

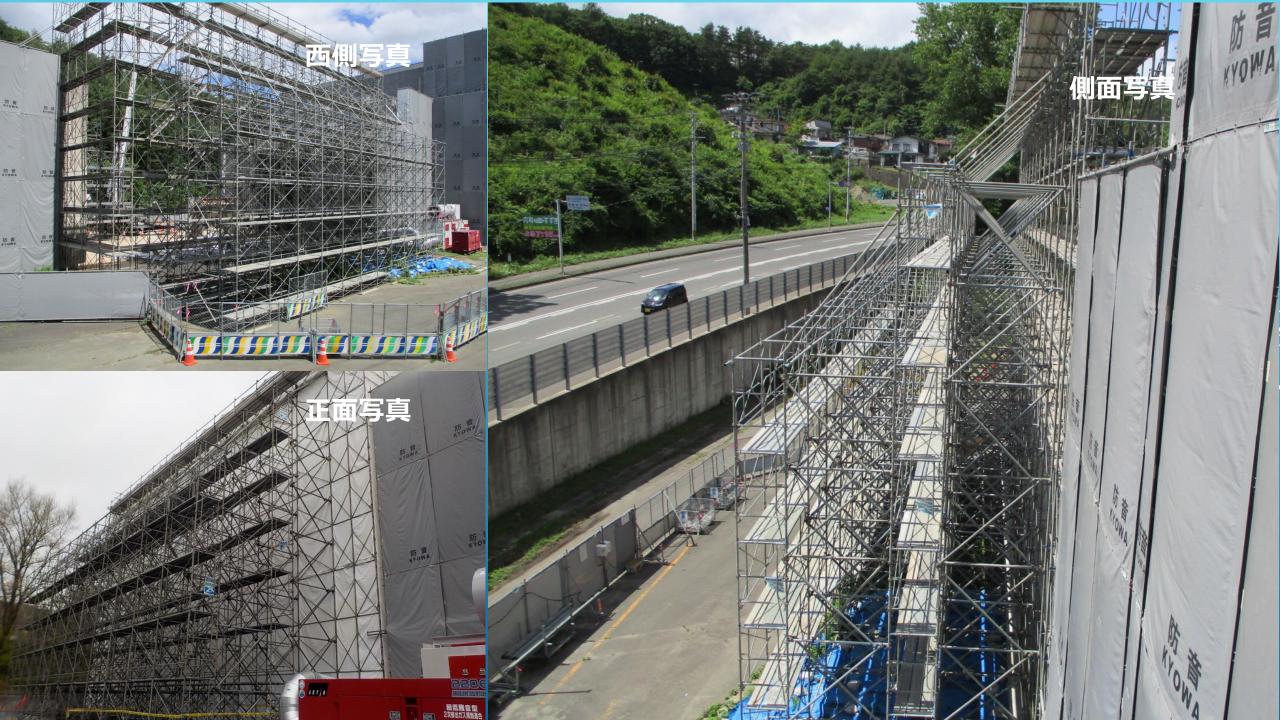
38 / 42 b) 浮き上がりの検討 *風荷重の作用点は建枠3列の真ん中の最上段とし、中Wも真ん中の建枠の芯々の距離として検討を行う。 【計算条件】 重量(kN) 0.152 A3055A 0.135 1.620 4.134 0.159 0.890 0.089 1.764 0.042 0.252 連結ピン 0.006 1.750 0.027 × 0.297 0.297 0.297 頭ツナギ 幅木(鋼製足場板) 0.593 スカイジャック 0.216 (SJC18) つなぎ材 $(\phi 48.6 \times 2.4)$ 0.027 × 5.000 0.675 4.000 0.432 単管控え $(\phi 48.6 \times 2.4)$ 0.027 ×

0.672 15.257


N = P

クランプ


= 15.257 kN ≧ 9.338 kN ∴ OK


(ARC1)

0.007

断面図

補強施工写真

より強度が増す様に、既存建屋の位置を実測により測量して、図面を作成し、既存建屋RC壁繋ぎを取付け、強固なテントに仕上げました。

完成写真

改善効果

1、テント内にワイヤーが無い為、機器解体時重機オペレーターの接触事故の危険性が減少される

2、通常はワイヤーの点検に高所作業車を使用しなければならないが 足場だけなら、足場上で点検が可能になる

3、外周部壁を枠組2列補強した為、安定して揺れが少ない

総括

- ①苦慮した点としては、敷地や建物に合わせて、全て実測の上 図面を作成しなければならなかった。
- ②限られた敷地内での大型クレーンの選択と組立順序の 計画を綿密に行う事が大事で有る。
- ③工期の短縮により、工程に間に合わせる事が出来た。 (幸い天気にも恵まれ工程通り行われました)